a2 United States Patent

Bailey et al.

US009442746B2

US 9,442,746 B2
*Sep. 13, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

COMMON SYSTEM SERVICES FOR
MANAGING CONFIGURATION AND OTHER
RUNTIME SETTINGS OF APPLICATIONS

Applicant: International Business Machines

Corporation, Armonk, NY (US)
Inventors: Kimberly T. Bailey, Raleigh, NC (US);
Thomas K. McCarthy, Durham, NC
(US); Michael W. Stayton, Cary, NC
(US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/825,135
Filed: Aug. 12, 2015

Prior Publication Data

US 2015/0370581 Al Dec. 24, 2015

Related U.S. Application Data

Continuation of application No. 14/308,061, filed on
Jun. 18, 2014.

Int. CL.

GO6F 9/445 (2006.01)

GO6F 9/54 (2006.01)

GO6F 9/46 (2006.01)

U.S. CL

CPC GO6F 9/44505 (2013.01); GO6F 9/461

(2013.01); GOGF 9/54 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,127,526 Bl
2002/0173984 Al

10/2006
11/2002

Duncan et al.
Robertson et al.

2005/0114870 Al* 5/2005 Song GO6F 21/52
719/328
2008/0301691 Al 12/2008 Mamagkakis et al.
2010/0205416 Al* 82010 Lanner GO6F 9/44505
713/1
2013/0298243 Al 11/2013 Kumar et al.
2015/0370598 Al 12/2015 Bailey et al.

OTHER PUBLICATIONS

“Computational Registry Services,” IP.com Prior Art Database
Technical Disclosure No. IPCOM000131647D, Nov. 11, 2005, 3
pages.

“Method and System for Assigning Appropriate Run-Time Services
to One or More Applications in an Enterprise,” IP.com Prior Art
Database Technical Disclosure No. IPCOM000200295D, Oct. 4,
2010, 3 pages.

Bailey et al., “Common Sense Services for Managing Configuration
and Other Runtime Settings of Applications,” U.S. Appl. No.
14/308,061, filed Jun. 18, 2014, 34 pages.

Office Action, dated Jul. 30, 2015, regarding U.S. Appl. No.
14/308,061, 25 pages.

Notice of Allowance, dated Apr. 12, 2016, regarding U.S. Appl. No.
14/308,061, 11 pages.

Final Office Action, dated Dec. 15, 2015, regarding U.S. Appl. No.
14/308,061, 29 pages.

* cited by examiner

Primary Examiner — Hang Pan
Assistant Examiner — Amir Soltanzadeh

(74) Attorney, Agent, or Firm — Yee & Associates, P.C.;
Joseph Petrokaitis
57 ABSTRACT

A method for managing settings of applications. A request
from an application to store runtime settings currently being
used by the application is identified. In response to identi-
fying the request, the runtime settings are then stored on in
a repository of runtime settings. In one or more examples,
the application is running on an operating system on a
computer system, and the request is communicated through
a common system service of the operating system.

5 Claims, 5 Drawing Sheets

114 APPLICATION MANAGEMENT ENVIRONMENT 18

RUNTIME SETTINGS APPLICATION MANAGEMENT
REPQSITORY INSTRUCTION STORAGE

12 1161 NSTRUCTIONS

| COMMON SYSTEM SERVICE |

10~ 10\3‘ COMPUTERS

COMPUTER '1/06

MIDDLEWARE
120

104 APPLICATIONS
\

APPLICATION

RUNTIME SETTINGS

102

DATA CENTER . 126

124

GROUP OF SERVERS :/22

SERVER

PROVIDERS |\ 128

U.S. Patent

Sep. 13, 2016

Sheet 1 of 5

US 9,442,746 B2

114

N

APPLICATION MANAGEMENT ENVIRONMENT

118

(

RUNTIME SETTINGS
REPOSITORY

D (

PPLICATION MANAGEMENT
INSTRUCTION STORAGE

S

]
116 /| INSTRUCTIONS

\

COMMON SYSTEM SERVICE

A
Y

A
A

110\

108 COMPUTERS

MIDDLEWARE

COMPUTER 106

A
\

10\4‘ APPLICATIONS

APPLICATION
| RUNTIME SETTINGS |

\
102

124 DATA CENTER

GROUP OF SERVERS

122

SERVER

PROVIDERS 128

FI1G. 1

COMPUTER

OPERATING SYSTEM

COMMON SYSTEM

204

| APPLICATIONS |

/
206

208
Z

| wmiDDLEwARE |

FI1G. 2

U.S. Patent Sep. 13,2016 Sheet 2 of 5 US 9,442,746 B2

300

/

COMMON SYSTEM SERVICE

CONSUMER APPLICATION 302
PROGRAMMING INTERFACES

REGISTRATION
RUNTIME SETTINGS STORAGE
CHANGE NOTIFICATIONS

\-304
306
308

PROVIDER APPLICATION 303
PROGRAMMING INTERFACES

REGISTRATION
MANAGEMENT SERVICES
CHANGE NOTIFICATIONS

310
312
314

FIG. 3

(START)

Y
IDENTIFY INSTRUCTIONS FOR MANAGING AN
500 APPLICATION, WHEREIN THE APPLICATION USES A
COMMON SYSTEM SERVICE OF AN OPERATING SYSTEM
ONACOMPUTER SYSTEM TO MANAGE RUNTIME
SETTINGS CURRENTLY BEING USED BY THE APPLICATION

INTERCEPT A REQUEST SENT TO THE COMMON SYSTEM
SERVICE FROM THE APPLICATION TO RETRIEVE THE
RUNTIME SETTINGS FOR USE BY THE APPLICATION

502~ |

Y
RETRIEVE THE RUNTIME SETTINGS FROM AREPOSITORY
BASED ON THE INSTRUCTIONS FOR MANAGING THE
APPLICATION

504+

Y
END

FI1G. 5

U.S. Patent Sep. 13,2016 Sheet 3 of 5 US 9,442,746 B2

IDENTIFY AREQUEST FROM AN APPLICATION TO STORE RUNTIME

400~ | SETTINGS CURRENTLY BEING USED BY THE APPLICATION, WHEREIN

THE APPLICATION SENDS REQUESTS THROUGH A COMMON SYSTEM
SERVICE FOR MANAGING RUNTIME SETTINGS OF APPLICATIONS

Y
402~ | STORE THE RUNTIME SETTINGS IN AREPOSITORY IN RESPONSE TO
IDENTIFYING THE REQUEST TO STORE THE RUNTIME SETTINGS

v
REGISTER THE APPLICATION WITH THE COMMON SYSTEM SERVICE AND
RETURN REGISTRATION INFORMATION TO THE APPLICATION FOR USE IN
IDENTIFYING FURTHER REQUESTS FROM THE APPLICATION IN
RESPONSE TO IDENTIFYING AREQUEST FROM THE APPLICATION TO
REGISTER THE APPLICATION WITH THE COMMON SYSTEM SERVICE

'
STORE AN UPDATE TO THE RUNTIME SETTINGS FOR THE APPLICATION
IN THE REPOSITORY IN RESPONSE TO IDENTIFYING A REQUEST FROM
THE APPLICATION TO STORE THE UPDATE

v
RETRIEVE THE RUNTIME SETTINGS FOR THE APPLICATION FROM THE
REPOSITORY IN RESPONSE TO IDENTIFYING A REQUEST FROM THE
APPLICATION TO RETRIEVE THE SETTINGS

v
SUBSCRIBE THE APPLICATION TO NOTIFICATIONS ABOUT CHANGES TO
412~ THERUNTIME SETTINGS FOR THE APPLICATION IN RESPONSE TO
IDENTIFYING AREQUEST FROM THE APPLICATION TO SUBSCRIBE TO
NOTIFICATIONS ABOUT RUNTIME SETTINGS CHANGES

v
NOTIFY THE APPLICATION ABOUT CHANGES TO THE RUNTIME SETTINGS
414~ WHEN THE RUNTIME SETTINGS FOR THE APPLICATION CHANGE AND
THE APPLICATION HAS SUBSCRIBED TO BE NOTIFIED ABOUT CHANGES

406~ |

408 |

410~

END
FI1G. 4

U.S. Patent Sep. 13,2016 Sheet 4 of 5

US 9,442,746 B2

IDENTIFY INSTRUCTIONS FOR MANAGING APPLICATIONS
RUNNING ON AN OPERATING SYSTEM ON A COMPUTER SYSTEM

| -600

Y

INTERCEPT A REQUEST TO START AN APPLICATION ON THE
OPERATING SYSTEM IN THE COMPUTER SYSTEM

| 602

v

DETERMINE WHETHER THE INSTRUCTIONS ALLOW THE
APPLICATION TO START AND WHETHER THE INSTRUCTIONS
REQUIRE THE APPLICATION TO USE A COMMON SYSTEM SERVICE
TO MANAGE THE RUNTIME SETTINGS USED BY THE APPLICATION

604

DO THE
INSTRUCTIONS
ALLOW THE APPLICATION
TO START?

NO

DO THE
INSTRUCTIONS
REQUIRE THE APPLICATION

TO USE THE COMMON SYSTEM NO

SERVICE TO MANAGE THE RUNTIME
SETTINGS USED BY THE
APPLICATION?

606
/

IDENTIFY WHETHER THE APPLICATION USES THE COMMON
SYSTEM SERVICE TO MANAGE THE RUNTIME SETTINGS

IS THE
APPLICATION USING

610
y /

THE COMMON SYSTEM SERVICE YES

TO MANAGE THE RUNTIME

START THE
APPLICATION

SETTINGS?

TERMINATE THE

APPLICATION

612

F1G. 6

U.S. Patent Sep. 13,2016 Sheet 5 of 5 US 9,442,746 B2

700
FI1G. 7
DATA PROCESSING SYSTEM 716
704 706 STORAGE DEVICES 708
N N /
PROCESSOR PERSISTENT
UNIT MEMORY STORAGE
N\ P\
ﬁ R i
) I I I ’
COMMUNICATIONS INPUT/QUTPUT
UNIT UNIT DISPLAY
Ve 7 I
710 712 714
COMPUTER PROGRAM PRODUCT
COMPUTER READABLE MEDIA
PROGRAM CODE
71/8 724
/
COMPUTER READABLE
STORAGE MEDIA
720

US 9,442,746 B2

1
COMMON SYSTEM SERVICES FOR
MANAGING CONFIGURATION AND OTHER
RUNTIME SETTINGS OF APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of and claims the benefit
of priority to U.S. patent application Ser. No. 14/308,061,
filing date Jun. 18, 2014, the entire contents of which are
incorporated herein by reference.

BACKGROUND

1. Field

The disclosure relates generally to a data processing
system and, in particular to managing applications. Still
more particularly, the present disclosure relates to a method
for managing configuration and other runtime settings of
applications.

2. Description of the Related Art

Applications use settings to define preferred behaviors of
the applications. These settings are typically stored as con-
figuration information for the applications. The settings can
be stored in configuration files, databases, and other types of
storage. Storage of the settings is done on a wide range of
storage devices. For example, an application may access
settings in a configuration file on a storage device of a
computer running the application. As another example, the
application may also use a network between the computer
running the application and a server computer to access
settings at the server computer.

Settings of applications are modified by editing the con-
figuration files. Users edit the settings in the configuration
files to change some functionality of the applications. Appli-
cations also provide user interfaces to allow users easier
access to the settings than manual editing of the configura-
tion files. When an application starts up, the modified
settings of the application are loaded from the application
configuration file and the application then proceeds accord-
ing to the modified settings. Some applications allow
changes to the settings the application is currently using
without having to restart the application. The settings being
used by a running application are called runtime settings.
When runtime settings of an application are modified, they
need to be saved or they will become lost when the appli-
cation restarts. The runtime settings may be saved on
request, on each change, when the application is closed, and
other suitable times. However, at any point in time there may
be differences between runtime settings currently being used
by the application and stored settings that will be used when
the application is restarted.

Systems management and monitoring tools use configu-
ration files of applications to determine if the applications
are using correct or preferred settings. For example, a
systems management tool may determine if an application is
operating securely by evaluating security settings in a con-
figuration file for the application. As another example, a
monitoring tool may determine if an application is config-
ured to perform optimally by evaluating performance related
settings of the application. However, the locations where
applications load settings can change over time with edits to
configuration settings and with updates to the applications.
When the locations change, the old configuration files may
remain and the tools may not know which files to use. The
format of the settings stored in configuration files may vary
from application to application and from one version of an

15

20

25

35

40

45

55

2

application to the next. When a new format is used the tools
have to be updated to use the new format.

Additionally, some applications may use default values
for settings not explicitly specified in configuration files. For
example, a primary network used by an application may go
down forcing the application to use default values for a
backup network. In this example, the default values for the
settings may be located in program instructions of the
application rather than in settings in a configuration file.
These default values may change over time with revisions to
the applications and based on other factors that are not
identifiable in configuration files.

Therefore, it would be desirable to have a method, appa-
ratus, and computer program product that takes into account
at least some of the issues discussed above.

SUMMARY

In one illustrative embodiment, a method, for managing
settings of applications is disclosed. A request from an
application to store runtime settings currently being used by
the application is identified. The runtime settings are stored
in a repository in response to identifying the request. In one
or more examples, the application is running on an operating
system on a computer system, and the request is communi-
cated through a common system service of the operating
system.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram of a data flow of a process for
managing applications in an application management envi-
ronment in accordance with an illustrative embodiment;

FIG. 2 is a block diagram of software components of a
data processing system for managing applications in accor-
dance with an illustrative embodiment;

FIG. 3 is a block diagram of application programming
interfaces of a common system service for managing appli-
cations in accordance with an illustrative embodiment;

FIG. 4 is a flowchart of a process for managing settings
of applications in accordance with an illustrative embodi-
ment;

FIG. 5 is a flowchart of a process for managing applica-
tions in accordance with an illustrative embodiment;

FIG. 6 is a flowchart of a process for managing applica-
tions in accordance with an illustrative embodiment; and

FIG. 7 is an illustration of a data processing system in
accordance with an illustrative embodiment.

DETAILED DESCRIPTION

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes

US 9,442,746 B2

3

the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

10

15

20

25

30

35

40

45

50

55

60

65

4

These computer program instructions may be provided to
a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks. These computer program
instructions may also be stored in a computer readable
medium that can direct a computer, other programmable
data processing apparatus, or other devices to function in a
particular manner, such that the instructions stored in the
computer readable medium produce an article of manufac-
ture including instructions which implement the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The illustrative embodiments recognize and take into
account a number of different considerations. For example,
the illustrative embodiments recognize and take into account
that existing data processing systems ways to determine
when an application is active on the data processing system.
For example, local services may be available in a data
processing system to obtain status for applications running
in the data processing system.

The illustrative embodiments also recognize and take into
account that existing applications change or modify settings
used by the applications using configuration files. Tools are
programmed to read these configuration files to identify
settings being use by the applications.

The illustrative embodiments further recognize and take
into account that some tools interact with an application to
poll the application for settings being used by the applica-
tion. For example, a service in an application may use
system network management protocol (SNMP) to expose
settings of the application.

With reference now to the figures and, in particular, with
reference to FIG. 1, a block diagram of a data flow of a
process for managing applications in an application man-

US 9,442,746 B2

5

agement environment is depicted in accordance with an
illustrative embodiment. Application management environ-
ment 100 is an illustrative example of an environment for
managing runtime settings 102 of application 104. In these
illustrative examples, runtime settings, such as runtime
settings 102, are values specifying preferred behaviors of
applications. In the illustrative example, runtime settings
102 may include at least one of networking protocol settings
used by application 104 to communicate with remote data
processing systems, display settings used by application 104
to present information, or any other suitable types of settings
used by applications in application management environ-
ment 100.

As used herein, the phrase “at least one of”, when used
with a list of items, means different combinations of one or
more of the listed items may be used and only one of each
item in the list may be needed. For example, “at least one of
item A, item B, or item C” may include, without limitation,
item A, item A and item B, or item B. This example also may
include item A, item B, and item C or item B and item C. Of
course, any combinations of these items may be present. In
other examples, “at least one of” may be, for example,
without limitation, two of item A, one of item B, and ten of
item C; four of item B and seven of item C; and other
suitable combinations. The item may be a particular object,
thing, or a category. In other words, at least one of means
any combination of items and number of items may be used
from the list but not all of the items in the list are required.
As used herein, the phrase “a number of,” when used with
reference to items, means one or more items. For example,
a “number of rules” is one or more rules.

In this illustrative example, application 104 is an example
of an application in applications 106. Applications 106 are
software programs configured to run on computer 108.
Applications 106 may include at least one of client pro-
grams, server programs, middleware programs, or any other
suitable type of computer programs. Applications 106 use
program instructions to carry out operations based on run-
time settings 102.

Computer 108 is an example of a computer in computers
110 in application management environment 100. Comput-
ers 110 may include at least one of personal computer
systems, server computer systems, thin clients, thick clients,
hand-held or laptop devices, multiprocessor systems, micro-
processor-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and other computing envi-
ronments that include any of the above systems or devices,
and the like.

As depicted, common system service 112 manages run-
time settings for applications 106 in computers 110. In this
illustrative example, common system service 112 manages
runtime settings 102 for application 104 in computer 108. In
the illustrated example, application 104 is a consumer of
common system service 112. As used herein, a consumer of
a service is an application that uses the service as a client.
Common system service 112 processes requests from appli-
cation 104 to at least one of register application 104,
de-register application 104, save runtime settings 102 and
updates to runtime settings 102, retrieving runtime settings
102, subscribe to notifications about changes to runtime
settings 102, or other suitable types of requests in applica-
tion management environment 100.

Common system service 112 may use runtime settings
repository 114 as storage for runtime settings 102. In this
illustrative example, common system service 112 may store
runtime settings 102 currently in use by application 104 in

20

30

35

40

45

50

55

60

65

6

runtime settings repository 114. For example, common
system service 112 may receive runtime settings 102 in a
request sent from application 104 to store runtime settings
102. In this example, responsive to receiving the request,
common system service 112 stores runtime settings 102 in
runtime settings repository 114. Common system service
112 may also retrieve runtime settings 102 from runtime
settings repository 114 for use by application 104. For
example, common system service 112 may receive a request
from application 104 for runtime settings 102. In this
example, responsive to receiving the request, common sys-
tem service 112 retrieves runtime settings 102 from runtime
settings repository 114 and forwards runtime settings 102 to
application 104.

In these illustrative examples, runtime settings repository
114 includes runtime settings such as runtime settings 102.
For example, runtime settings repository 114 may be imple-
mented using a computer readable storage device. As
another example, runtime settings repository 114 may be at
least one of an in memory buffer, a database or any other
suitable storage for storage of runtime settings in application
management environment 100. For example, runtime set-
tings repository 114 may be a file in a computer readable
storage device of a data processing system.

As depicted, common system service 112 manages appli-
cations 106 in computers 110. In this illustrative example,
common system service 112 manages application 104 in
computer 108. In the illustrated example, common system
service 112 uses instructions 116 to manage application 104.
Instructions 116 are rules for managing application 104 that
are implemented by common system service 112. Instruc-
tions 116 are processed by common system service 112 to at
least one of determine whether application 104 is using
common system service 112 to manage runtime settings 102,
terminate application 104 in response to determining appli-
cation 104 is not using common system service 112 to
manage runtime settings 102, start application 104 in
response to determining application 104 is using common
system service 112 to manage runtime settings 102, or other
suitable types of instructions in application management
environment 100.

Common system service 112 may use application man-
agement instruction storage 118 as a repository for instruc-
tions 116. In this illustrative example, common system
service 112 may store instructions 116 currently in use by
common system service 112 in application management
instruction storage 118. For example, common system ser-
vice 112 may receive instructions 116 in a request sent to
common system service 112 to store instructions 116. In this
example, responsive to receiving the request, common sys-
tem service 112 stores instructions 116 in application man-
agement instruction storage 118. Common system service
112 may also retrieve instructions 116 from application
management instruction storage 118 for use in managing
application 104. For example, common system service 112
may use instructions 116 in a process to manage whether
application 104 is terminated, started, or allowed to continue
running in computer 108.

In these illustrative examples, application management
instruction storage 118 includes instructions such as instruc-
tions 116. For example, application management instruction
storage 118 may be implemented using a computer readable
storage device. As another example, application manage-
ment instruction storage 118 may be at least one of an in
memory buffer, a database or any other suitable storage for
storage of instructions in application management environ-
ment 100. For example, application management instruction

US 9,442,746 B2

7

storage 118 may be a file in a computer readable storage
device of a data processing system.

As depicted, common system service 112 may commu-
nicate with middleware, such as middleware 120, to manage
applications 106 and to manage runtime settings of appli-
cations 106. In the illustrated example, common system
service 112 communicates with middleware 120 to manage
application 104 and runtime settings 102. For example,
middleware 120 may send requests to common system
service 112 to at least one of register application 104,
de-register application 104, save runtime settings 102 and
updates to runtime settings 102, retrieving runtime settings
102, subscribe application 104 to notifications about
changes to runtime settings 102. The requests sent from
middleware 120 may also include requests to store instruc-
tions 116, update instructions 116, retrieve instructions 116,
subscribe middleware 120 to notifications about changes to
runtime settings 102, subscribe middleware 120 to notifica-
tions about changes to instructions 116, or other suitable
types of middleware requests in application management
environment 100.

In the illustrative example, middleware 120 is software
running on a computer. In this illustrated example, middle-
ware 120 is running on server 122 in group of servers 124
in data center 126 in application management environment
100. Server 122 is a computer configured to serve client
computers. Group of servers 124 may be any combination of
clusters of computers, virtual computers, and other suitable
types of devices.

In the illustrated example, data center 126 is at least one
of a cloud computing center, an enterprise data warehouse,
an internet web site, or any other suitable type or combina-
tion of types of computing centers for consumers of com-
mon system service 112 and providers 128 of applications
106. In this illustrated example, providers 128 of applica-
tions 106 are at least of one owners, operators, or managers
of one or more applications in applications 106. For
example, as a manager, operator, or owner of application
104 a provider in provider 128 may have authorization to
manage at least one of application 104, runtime settings 102,
or both application 104 and runtime settings 102.

As depicted, middleware 120 may send and receive
runtime settings 102 to and from providers 128 in server
122. Middleware 120 may also send and receive instructions
116 to and from providers 128 in server 122. For example,
middleware 120 may manage and communicate requests,
responses, and notifications communicated between provid-
ers 128 and common system service 112.

The illustration of application management environment
100 in FIG. 1 is not meant to imply physical or architectural
limitations to the manner in which different illustrative
embodiments may be implemented. Other components in
addition to and/or in place of the ones illustrated may be
used. Some components may be unnecessary. Also, the
blocks are presented to illustrate some functional compo-
nents. One or more of these blocks may be combined and/or
divided into different blocks when implemented in an illus-
trative embodiment.

For example, runtime settings repository 114 may be
implemented in memory of computer 108. As another
example, common system service 112 may be implemented
in middleware 120. As still another example, runtime set-
tings repository 114, application management instruction
storage 118, and common system service 112 may be
combined into one software program or database.

In some illustrative examples, additional groups of serv-
ers in addition to group of servers 124 in data center 126 may

10

15

20

25

30

35

40

45

50

55

60

65

8

be present within application management environment 100.
For example, another group of servers other than group of
servers 124 may be located in another data center other than
data center 126. In this example, middleware 120 may
determine which group of servers to manage runtime set-
tings 102 and manage application 104.

Also, although components of application management
environment 100 are shown as separate blocks in application
management environment 100, all or a portion of these may
also be implemented in computers 110, group of servers 124,
or other suitable components in application management
environment 100. In these illustrative examples, application
management environment 100 may be implemented by any
combination of hardware and software products, and may
also be implemented in one or more computer systems or a
cluster of computer systems.

With reference next to FIG. 2, a block diagram of software
components of a data processing system for managing
applications is depicted in accordance with an illustrative
embodiment. Computer 200 is an illustrative example of
computer 108 in FIG. 1. Common system service 202 is an
illustrative example of common system service 112 in FIG.
1.

In this illustrative example, common system service 202
is located in operating system 204 of computer 200. For
example, common system service 202 may be a program
module of operating system 204. In the illustrative example,
common system service 202 may operate as a portion of the
kernel of operating system 204. Further in this illustrative
example, common system service 202 may operate at a ring
level of the operating system that is kept separate and secure
from another ring level of applications 206 and middleware
208 running on operating system 204 in computer 200. As
used herein, a program module of operating system 204 may
be at least one of an installed extension to operating system
204 and part of operating system 204 that comes with
operating system 204.

In this illustrative example, applications 206 is an
example of applications 106 in FIG. 1. Middleware 208 is an
example of middleware 120 in FIG. 1. In the illustrative
example, applications 206 and middleware 208 use common
system service 202 in operating system 204 in at least one
of'a process for managing applications 206 and a process for
managing runtime settings of applications 206.

Turning next to FIG. 3, a block diagram of application
programming interfaces of a common system service for
managing applications is depicted in accordance with an
illustrative embodiment. In this illustrative example, com-
mon system service 300 is an example of common system
service 112 in FIG. 1. As depicted, one or both of consumer
application programming interfaces 302 and provider appli-
cation programming interfaces may be located in common
system service 300.

Consumer application programming interfaces 302
include registration 304, runtime settings storage 306, and
change notifications 308. In this illustrative example, regis-
tration 304 interface registers consumers with common
system service 300, runtime settings storage 306 interface
manages runtime settings of applications, and change noti-
fications 308 interface manages notifications sent to con-
sumers about runtime settings changes.

Provider application programming interfaces 303 include
registration 310, management services 312, and change
notifications 314. In this illustrative example, registration
310 interface registers providers with common system ser-
vice 300, management services 312 interface manages appli-
cations, and change notifications 314 interface manages

US 9,442,746 B2

9

notifications sent to providers about runtime settings
changes and instruction changes.

In the illustrative example, runtime settings are commu-
nicated through consumer application programming inter-
faces 302 and provider application programming interfaces
303. Runtime settings communicated through common sys-
tem service 300 interfaces may have a format selected for
the application based on what type of application the appli-
cation is. The type of the application is a phrase or word that
describes what the application does. For example, when
runtime settings are for a particular type of networking
application the runtime settings may be in a format stan-
dardized for the particular type of networking application.
Runtime settings communicated through common system
service 300 interfaces may also have a format selected based
on the type of settings being used. For example, an office
application may include some runtime settings for commu-
nicating between other office applications. In this example,
the format for these runtime settings may be in a common
format for application to application communications. As
used herein, a common format for runtime settings of an
application may be selected based on at least one of a type
of application, a type of settings, or a combination of the
type of application and the type of settings. The common
format may be in xml, html, resource description format
(RDF), or other suitable standards for specifying runtime
settings of applications.

When applications communicate runtime settings with
common system service 300, the format of the runtime
settings communicated through common system service 300
may be different than the format of the settings stored in
configuration files of the applications. For example, a first
application may have a first proprietary format for settings
stored in a configuration file of the application and a second
standard format for runtime settings communicated through
interfaces of common system service 300. As another
example, a first application may have a first standard format
for settings stored in a configuration file of the first appli-
cation and a second application may have a second standard
format for settings stored in a configuration file of the first
application. In this example, the first and second application
may use a common format for communicating runtime
settings through interfaces of common system service 300.

Turning next to FIG. 4, a flowchart of a process for
managing settings of applications is depicted in accordance
with an illustrative embodiment. The steps illustrated in
FIG. 4 are examples of steps that may be used to manage
runtime settings 102 of application 104 in FIG. 1. These
steps may be implemented in common system service 112 in
FIG. 1, runtime settings repository 114 in FIG. 1, computer
108 in FIG. 1, and in other data processing systems in FIG.
1.

The process begins by identifying a request from an
application to store runtime settings currently being used by
the application (step 400). As depicted, the application sends
the request through a common system service for managing
runtime settings of applications. The runtime settings cur-
rently being used by the application in step 400 is an
example of runtime settings 102 of application 104. The
common system service for managing runtime settings of
applications in step 400 is an example of common system
service 112.

In response to identifying the request to store the runtime
settings, the process next stores the runtime settings in a
repository (step 402). The repository in step 402 is an
example of runtime settings repository 114 in FIG. 1.

20

25

30

40

45

50

55

10

As depicted, the process may also identify another request
from the application to one or more of register the applica-
tion with the common system service (step 406), save
updates to the runtime settings for the application (step 408),
retrieve the runtime settings for the application (step 410),
and subscribe the application to notifications about changes
to the runtime settings (step 412). The process then notifies
the application about changes to runtime settings when the
runtime settings for the application change and the applica-
tion has subscribed to be notified about changes (step 414),
with the process terminating thereafter. For example, the
process in step 414 may be in response to a provider of the
application providing an update to the runtime settings for
the application.

The process in FIG. 4 may be repeated any number of
times. For example, two or more applications may share
runtime settings. In this example, each application may
subscribe to notifications about changes to the shared run-
time settings. Responsive a first application of the two or
more applications saving or updating shared runtime set-
tings, a second application of the two or more applications
is notified about the changes, with the notification including
the changes made to the runtime settings by the first appli-
cation.

Turning further to FIG. 5, a flowchart of a process for
managing applications is depicted in accordance with an
illustrative embodiment. The steps illustrated in FIG. 5 are
examples of steps that may be used to manage application
104 in FIG. 1. These steps may be implemented in common
system service 112 in FIG. 1, middleware 120 in FIG. 1,
runtime settings repository 114 in FIG. 1, application man-
agement instruction storage 118 in FIG. 1, computer 108 in
FIG. 1, and in other data processing systems in FIG. 1.

The process begins by identifying instructions for man-
aging an application (step 500). As depicted, the application
uses a common system service of an operating system on a
computer system to managing runtime settings currently
being used by the application. The runtime settings currently
being used by the application in step 500 is an example of
runtime settings 102 of application 104. The common sys-
tem service for managing runtime settings of applications in
step 500 is an example of common system service 112. The
identified instructions are an example of instructions 116 in
FIG. 1.

The process next intercepts a request sent to the common
system service from the application to retrieve the runtime
settings for use by the application (step 502). The process
then retrieves the runtime settings from a repository based
on the instructions for managing the application (step 504),
with the process terminating thereafter. For example, the
process in step 504 may be in response to instructions from
middleware 120 allowing the application to retrieve the
runtime settings when the application has registered with the
common system service to use the common system service
to manage the runtimes settings of the application.

Turning still further to FIG. 6, a flowchart of a process for
managing applications is depicted in accordance with an
illustrative embodiment. The steps illustrated in FIG. 6 are
examples of steps that may be used to manage application
104 in FIG. 1. These steps may be implemented in common
system service 112 in FIG. 1, middleware 120 in FIG. 1,
runtime settings repository 114 in FIG. 1, application man-
agement instruction storage 118 in FIG. 1, computer 108 in
FIG. 1, and in other data processing systems in FIG. 1.

The process begins by identifying instructions for man-
aging applications running on an operating system on a
computer system (step 600). The identified instructions are

US 9,442,746 B2

11

an example of instructions 116 in FIG. 1. The applications
are an example of applications 206 in FIG. 2. The operating
system on the computer system is an example of operating
system 204 on computer 200 in FIG. 2.

As depicted, the process next intercepts a request to start
an application on the operating system in the computer
system (step 602). The process determines whether the
instructions allow the application to start and whether the
instructions require the application use a common system
service to manage the runtime settings use by the application
(step 604). If the instructions allow the application to start
and do not require the application use the common system
service, the process starts the application (step 610), with the
process terminating thereafter.

As depicted when the instructions allow the application to
start if the application is using the common system service
to manage the runtime settings of the application, the
process next identifies whether the application uses the
common system service to manage the runtime settings of
the application (step 606). When the application is using the
common system service to manage the runtime settings as
per the identified instructions, the process then starts the
application (step 610), with the process terminating there-
after.

When the instructions do not allow the application to start,
or when the instructions allow the application to start but the
application is not using the common system service to
manage the runtime settings as per the identified instruc-
tions, the process then terminates the application (step 612),
with the process terminating thereafter.

The process in FIG. 6 may be repeated any number of
times. For example, providers of the applications in step 600
may provide changes to the instructions in step 600. In this
example, the providers may provide instructions to stop one
or more of the applications from running. The providers of
the applications may also provide instructions to restart
terminated applications. The providers of the applications
may further provide instructions to allow applications to run
without requiring the applications use the common system
service to manage runtime settings.

Turning now to FIG. 7, an illustration of a data processing
system is depicted in accordance with an illustrative
embodiment. Data processing system 700 is an example of
a data processing system that may be used to implement
common system service 112 in FIG. 1, middleware 120 in
FIG. 1, runtime settings repository 114 in FIG. 1, application
management instruction storage 118 in FIG. 1, computer 108
in FIG. 1, and in other data processing systems in FIG. 1. In
this illustrative example, data processing system 700
includes communications framework 702, which provides
communications between processor unit 704, memory 706,
persistent storage 708, communications unit 710, input/
output (I/O) unit 712, and display 714. In these examples,
communications frame work 702 may be a bus system.

Processor unit 704 serves to execute instructions for
software that may be loaded into memory 706. Processor
unit 704 may be a number of processors, a multi-processor
core, or some other type of processor, depending on the
particular implementation. A number, as used herein with
reference to an item, means one or more items. Further,
processor unit 704 may be implemented using a number of
heterogeneous processor systems in which a main processor
is present with secondary processors on a single chip. As
another illustrative example, processor unit 704 may be a
symmetric multi-processor system containing multiple pro-
cessors of the same type. A group of processors or processor
units is one of more processors that may be located on a

10

15

20

25

30

35

40

45

50

55

60

65

12

same computer or on different computers. In other words,
the group of processors could be distributed in different
locations.

Memory 706 and persistent storage 708 are examples of
storage devices 716. A storage device is any piece of
hardware that is capable of storing information, such as, for
example, without limitation, data, program code in func-
tional form, and/or other suitable information either on a
temporary basis and/or a permanent basis. Storage devices
716 may also be referred to as computer readable storage
devices in these examples. Memory 706, in these examples,
may be, for example, a random access memory or any other
suitable volatile or non-volatile storage device. Persistent
storage 708 may take various forms, depending on the
particular implementation.

For example, persistent storage 708 may contain one or
more components or devices. For example, persistent stor-
age 708 may be a hard drive, a flash memory, a rewritable
optical disk, a rewritable magnetic tape, or some combina-
tion of the above. The media used by persistent storage 708
also may be removable. For example, a removable hard
drive may be used for persistent storage 708.

Communications unit 710, in these examples, provides
for communications with other data processing systems or
devices. In these examples, communications unit 710 is a
network interface card. Communications unit 710 may pro-
vide communications through the use of either or both
physical and wireless communications links.

Input/output unit 712 allows for input and output of data
with other devices that may be connected to data processing
system 700. For example, input/output unit 712 may provide
a connection for user input through a keyboard, a mouse,
and/or some other suitable input device. Further, input/
output unit 712 may send output to a printer. Display 714
provides a mechanism to display information to a user.

Instructions for the operating system, applications, and/or
programs may be located in storage devices 716, which are
in communication with processor unit 704 through commu-
nications framework 702. In these illustrative examples, the
instructions are in a functional form on persistent storage
708. These instructions may be loaded into memory 706 for
execution by processor unit 704. The processes of the
different embodiments may be performed by processor unit
704 using computer implemented instructions, which may
be located in a memory, such as memory 706.

These instructions are referred to as program code, com-
puter usable program code, or computer readable program
code that may be read and executed by a processor in
processor unit 704. The program code in the different
embodiments may be embodied on different physical or
computer readable storage media, such as memory 706 or
persistent storage 708.

Program code 718 is located in a functional form on
computer readable media 720 that is selectively removable
and may be loaded onto or transferred to data processing
system 700 for execution by processor unit 704. Program
code 718 and computer readable media 720 form computer
program product 722 in these examples. In one example,
computer readable media 720 may be computer readable
storage media 724. Computer readable storage media 724
may include, for example, an optical or magnetic disk that
is inserted or placed into a drive or other device that is part
of persistent storage 708 for transfer onto a storage device,
such as a hard drive, that is part of persistent storage 708.
Computer readable storage media 724 also may take the
form of a persistent storage, such as a hard drive, a thumb
drive, or a flash memory, that is connected to data processing

US 9,442,746 B2

13

system 700. In some instances, computer readable storage
media 724 may not be removable from data processing
system 700. In these examples, computer readable storage
media 724 is a physical or tangible storage device used to
store program code 718 rather than a medium that propa-
gates or transmits program code 718. Computer readable
storage media 724 is also referred to as a computer readable
tangible storage device or a computer readable physical
storage device. In other words, computer readable storage
media 724 is a media that can be touched by a person.

The different components illustrated for data processing
system 700 are not meant to provide architectural limitations
to the manner in which different embodiments may be
implemented. The different illustrative embodiments may be
implemented in a data processing system including compo-
nents in addition to or in place of those illustrated for data
processing system 700. Other components shown in FIG. 7
can be varied from the illustrative examples shown. The
different embodiments may be implemented using any hard-
ware device or system capable of running program code. As
one example, the data processing system may include
organic components integrated with inorganic components
and/or may be comprised entirely of organic components
excluding a human being. For example, a storage device
may be comprised of an organic semiconductor.

In another illustrative example, processor unit 704 may
take the form of a hardware unit that has circuits that are
manufactured or configured for a particular use. This type of
hardware may perform operations without needing program
code to be loaded into a memory from a storage device to be
configured to perform the operations. For example, when
processor unit 704 takes the form of a hardware unit,
processor unit 704 may be a circuit system, an application
specific integrated circuit (ASIC), a programmable logic
device, or some other suitable type of hardware configured
to perform a number of operations. With a programmable
logic device, the device is configured to perform the number
of operations. The device may be reconfigured at a later time
or may be permanently configured to perform the number of
operations. Examples of programmable logic devices
include, for example, a programmable logic array, a pro-
grammable array logic, a field programmable logic array, a
field programmable gate array, and other suitable hardware
devices. With this type of implementation, program code
718 may be omitted because the processes for the different
embodiments are implemented in a hardware unit.

In still another illustrative example, processor unit 704
may be implemented using a combination of processors
found in computers and hardware units. Processor unit 704
may have a number of hardware units and a number of
processors that are configured to run program code 718.
With this depicted example, some of the processes may be
implemented in the number of hardware units, while other
processes may be implemented in the number of processors.

In another example, a bus system may be used to imple-
ment communications framework 702 and may be com-
prised of one or more buses, such as a system bus or an
input/output bus. Of course, the bus system may be imple-
mented using any suitable type of architecture that provides
for a transfer of data between different components or
devices attached to the bus system.

Additionally, a communications unit may include a num-
ber of more devices that transmit data, receive data, or
transmit and receive data. A communications unit may be,
for example, a modem or a network adapter, two network
adapters, or some combination thereof. Further, a memory
may be, for example, memory 706, or a cache, such as found

20

25

30

35

40

45

50

14

in an interface and memory controller hub that may be
present in communications framework 702.

Thus, the illustrative embodiments provide a method,
apparatus, and computer program product for managing
settings of applications is disclosed. In some examples, a
program identifies a request from an application to store
runtime settings currently being used by the application. In
these examples, the program then stores the runtime settings
in a repository in response to identifying the request. In one
or more examples, the application is running on an operating
system on a computer system, and the request is communi-
cated through a common system service of the operating
system. In these and other examples, program may also
comprise steps for identifying another request from the
application to one or more of register the application with
the common system service, save updates to the runtime
settings for the application, retrieve the runtime settings for
the application, and subscribe the application to notifications
about changes to the runtime settings. In these examples, the
program may notify the application about changes to run-
time settings when the runtime settings for the application
change and the application has subscribed to be notified
about changes.

By using a common system service to manage runtime
settings of applications the runtime settings of the applica-
tions can be consumed more efficiently and with less human
error. When the common system service is tightly integrated
with an operating system, the common system service is able
to manage process initiation and termination of running
applications. This common system service may manage
requirements of the applications to register with the common
system service, and if they don’t they are terminated. By
registering with the common system service, a repository of
runtime settings of applications can be created, and moni-
tored.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiment. The terminology used herein was
chosen to best explain the principles of the embodiment, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed here.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer
program products according to various embodiments of
the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of code, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). It should also be noted that, in some alter-
native implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-

US 9,442,746 B2

15

ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and
computer instructions.

What is claimed is:
1. A method for managing settings of applications, the
method comprising:

identifying, by a group of processors, a request, from an
application to a common system service using an
application programming interface, as a specific
request to store runtime settings currently being used
by the application, wherein the common system service
processes requests, in an application management envi-
ronment, from the application, selected from a group of
requests consisting of, register the application, de-
register the application, save the runtime settings and
updates to the runtime settings, retrieve the runtime
settings, and subscribe to notifications about changes to
the runtime settings, and wherein the application is
running on an operating system on a computer system,
and wherein the request is communicated through the
common system service of the operating system and
wherein the common system service is included in a
programming module installed in the operating system,
and wherein the application sent the request to the
common system service using an application program-
ming interface of the programming module, and
wherein the application programming interface is one
of a consumer application programming interface that
includes a registration interface, a runtime settings
storage interface, and a change notifications interface
and a provider application programming interface that
includes a registration interface, a management inter-
face, and a change notifications interface, and wherein
the request is a first request, and further comprising
identifying, by the group of processors, a second
request, from the application, to manage the runtime
settings currently being used by the application, and
wherein the application registers with the common
system service to use the common system service to

10

15

20

25

30

35

16

manage the runtimes settings of the application, and
wherein the second request includes requests selected
from the group of requests consisting of registering the
application, de-registering the application, saving an
update to the runtime settings for the application,
retrieving the runtime settings for the application, and
subscribing to notifications about changes to the run-
time settings for the application, and wherein the com-
mon system service processes the second request; and

storing, by the group of processors, the runtime settings
currently being used by the application in a repository
associated with the common system service in response
to identifying the request as the specific request to store
the runtime settings.

2. The method of claim 1, further comprising:

identifying, by the group of processors, instructions for

managing the application.

3. The method of claim 2, wherein the computer system
is a first computer system, the instructions are from middle-
ware, the middleware is in communication with a second
computer system, and the communication includes the run-
time settings.

4. The method of claim 2, wherein the instructions include
one or more of determining whether the application is using
the common system service to manage the runtime settings
being used by the application, terminating the application in
response to determining the application is not using the
common system service to manage the runtime settings
being used by the application, starting the application in
response to determining the application is using the common
system service to manage the runtime settings being used by
the application, and subscribing to notifications about
changes to the runtime settings being used by the applica-
tion.

5. The method of claim 1, wherein the application is a first
type of application, and wherein the runtime settings cur-
rently being used by the application is in a common format
for the first type of application.

#* #* #* #* #*

